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We introduce the Mellin transform of the balanced invariant measure associated 
to the Julia set generated by a rational transformation. We show that its analytic 
continuation is a meromorphic function, the poles of which are on a semi- 
infinite periodic lattice. This allows one to have an understanding of the 
behavior of the measure near a repulsive fixed point. Trace identities corre- 
sponding to the fact that the analytically continued Mellin transform vanishes at 
negative integers are derived for the polynomial case. The quadratic map is first 
analyzed in detail, and the analytic properties of the inverse of the Green's  
function are exhibited. Of interest is the appearance of a dense set of spikes at 
dyadic points when the Julia set is disconnected. These results are used to study 
the residues of the Mellin transform. A certain number  of physically interesting 
consequences are derived for the spectral dimensionality of quan tum mechanical  
systems, the excitation spectrum of which displays unusual  oscillations. The 
appearance of complex critical indices for thermodynamical  systems is also 
discussed in the conclusion. 

KEY WORDS: Functional equations; rational transformations; Julia sets; 
fractal dimension; spectral dimension; oscillatory critical behavior, 

1. INTRODUCTION 

Given a rational t ransformat ion of degree N, 

z'= T(z) (1.1) 
where T(z) is a rational fraction, one associates a Julia set (1) J,  which is the 
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closure of all unstable fixed points of all the iterates of T(z). On this set 
there exists a unique invariant balanced probability measure ~(E), which 
satisfies(2,3) 

/z(E) = /~(T IE) = N/z(T i ' (E) )  (1.2) 

where E is any Borel measurable subset of J, and 

N 

r- lE = [..J Ti-'E (1.3) 
i = 1  

the T,-JE being the N pre-images of E by T. For definiteness we shall 
suppose the degree of the numerator of T(z) equal to N, and bigger than or 
equal to the degree D of the denominator. 

1.1. Electrostatic Description 

In the polynomial case, one introduces an electrostatic language, in 
which the previous measure appears to be the equilibrium or maximum 
entropy measure, for a two-dimensional electrical system. (2'4) The corre- 
sponding Green's function is defined by 3 : 

GE.S. (z) = ; l n ( z  -- x) d/~ (x) (1.4) 

where E.S. stands for electrostatic. Gz.s. is the solution of the functional 
equation: 

1 GE.s.(Z) = ~ CE.s.(r(z)) (1.5) 

which behaves as 

GE.s.(z)~lnz for z ---~ oe (1.6) 

Besides GE.s.(Z), the real part of which represents the potential in the 
electrostatic analogy, one can introduce the B6ttcher function: (1) 

B (z) = exp(GE.s. (z)) (1.7) 

and also (5) the generating function of the moments of d/~: 

g(z) = f -1zTxdtX(x) (1.8) 

which is simply related to G(z) by 

1 G ' ( 1 )  (1.9) 
g ( z )  = z 

3 The Green's function is usually defined as the real part of (1.4). For convenience we use its 
complex extension. 
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The function g(z) has the advantage of being uniform near the point at 
infinity. 

As will be seen in Section 4, it is also useful to introduce the Mellin 
transform of d/x with respect to a point z ~ J by: 

Mz(s ) = ; ( z  - x)" dl~(x ) (I.10) 

This function will allow a precise analysis of the behavior of the Green's 
function near a point of the Julia set. More precise and complete indica- 
tions will be found in Section 2. 

Besides the well-known electrostatic language, we want to emphasize 
two other possible languages for the previous functions--one is quantum 
mechanical, the other is thermodynamical. 

1.2. Quantum Mechan ica l  Descr ipt ion 

We still restrict ourselves to the case where T(z) is a polynomial of 
degree N in z. It is possible (5'6) to associate to T(z) a one-dimensional 
quantum mechanical system on a lattice, with a Hamiltonian whose spec- 
trum is invariant under T, and such that there exists a decimation operator 
D acting on the wave function, with the properties 

DT(H)  = HD (1.11) 

We, of course, suppose here that the Julia set is real, so that H can be 
Hermitian. In this case, the measure/~ can be identified as the integrated 
density of states. We will introduce the following function associated to this 
problem: 

dl~(X) (1.12) 

Q.M. stands here for quantum mechanical, and [60) is the eigenfunction of 
a state localized at point 0. (6) We notice here a first possible confusion due 
to the fact that GQ.M.(Z) is called the Green's function of the quantum 
mechanical system, although it has to be identified not with GEs.(Z) but 
with its derivative g(z). We shall encounter similar misleading ambiguities 
with other functions, and a little dictionary (Table I) given at the end of 
this introduction will display the correspondence. 

The "Lyapounov function ''(7) defined as 4 

L(z) = (In(z  - x)dl~(X ) (1.13) 
J J  

4 The "Lyapounov function" is the real part of (1.13). 
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is nothing but the previous GE.s.(Z) Green's function. The Fredholm deter- 
minant (s) 

A(z) = e L(~) (1.14) 

was called in the electrostatic language the B6ttcher function. The 
function, (8~ previously called Mellin transform, 

~(z) = ; ( a  - x) 'd~(x) (1.t5) 

(where a is the end point of the spectrum) will give, by analysis of its 
singularities, an insight into the excitation spectrum (spectral dimensional- 
ity (9'1~ of the quantum mechanical system. 

1.3. Thermodynamical  Description 

The Ising hierarchical lattices (10 lead to recursion relations for the 
partition function which involve the invariance of the thermodynamical 
functions under rational transformations. The Julia set associated with 
these transformations appears in the thermodynamical limit as the set of 
singularities of the free energy(12): 

F(y) = ; l n ( y  - x) dlx(x ) (1.16) 

which corresponds to the electrostatic Green's function and to the 
"Lyapounov function" in the previous languages. Here (1. t 6) is a represen- 
tation of the Lee-Yang (13) type, in which dt~(x ) is the density of zeros of 
the partition function in the thermodynamic limit. Writing 

T(y) = N ( y ) / D ( y )  (1.17) 

where the highest degree coefficient of N(y) has been chosen equal to l, we 
get 

F(r (y ) )  = ; l n ( r ( y )  - x) dl~ (x) (1.18) 

Considering here the case where the degree N of N(y) is greater than the 
degree D of D(y), we can write 

i=N 
N ( y ) -  x D ( y ) =  II  I Y -  Ti- ' (x)  1 (1.19) 

i=l  

and therefore 

N 
1 1 In D(y)  ~ F ( T ( Y ) )  = N / = ~ l ; l n ( y  - v i - l ( x ) ) d ~ L ( x )  - (1.20) 
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However, the invariance tells us that 

N 

1 (' ln y T~.- - - . =  aa ( - dli(x) F(y )  N ,__~ ' (x))  = (1.21) 

and therefore we get 

1 l l n D ( y  ) (1.22) F(y) = --~ F( r(y))  + -~ 

Equation (1.22) reduces to the ordinary functional equation for the Green's 
function deduced in the polynomial case from the B6ttcher equation. 
However, Eq. (1.22) in the general case is of a different nature, due to the 
presence of an inhomogeneous term, and also by the fact that the factor N 
is the degree of the numerator alone, and not the difference between the 
degrees of the numerator and denominator, which would occur in a 
B6ttcher equation. Equation (1.22) involves the full Julia set and not only 
the outer part which limits the basin of attraction of the point at infinity. 

The repulsive real fixed point of T(y) will attract attention because it 
corresponds to the critical temperature. (12) The behavior of the solution 
F(y) of (1.22) near this point will be a singular one which requires some 
mathematical analysis. Again F(y) is fixed by its behavior F ( y ) ~ l n  y near 
infinity. Following Derrida et al., (14) one analyzes the solution (1.22) near 
the critical point as 

G(y)~h {ln(y - Yc) } (Y - yc)2- ~ (1.23) 

where h, the so-called amplitude, is here a periodic function of ln(y -Yc)  
and not merely a constant. 

In this paper we will direct our attention primarily to the quadratic 
map: 

T(y) = y2 _ ~ (1.24) 

although many of the ideas and technicalities involved will also be applied 
to rational maps. We shall introduce in a systematic way the Mellin 
transform of the invariant measure: 

M(s) = ; ( y  - yc)S dlz(y ) (1.25) 

from which all relevant properties near y~ of the free energy can be worked 
out. 

Before giving a brief review of the content of this paper, we summarize 
the various notations in Table I. The reader is requested to notice that the ~" 
function introduced in the quantum mechanical language appears to be 
different from the ~" functions (15) introduced in the theory of dynamical 
systems; the situation being even more confusing for the Green's functions. 
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Electrostatic 
Language 

Table I. Notations 

Quan tum Mechanical 
Language 

Thermodynamical  
Language 

r (E ) :  electric charge 
supported by the set E 

GEs(Z ) = j ] n ( z  -- x)  d r 

= electrostatic 
Green's  function a 

Bottcher function 
= exponential of the 

Green's  function 

r (E) :  integrated 
density of states 

/ ,  

L(z)  = J ] n ( z  - x)  d r 

="L yapounov"  
function a 

Fredholm determinant 
= exponential of the 

"Lyapounov"  
function 

r (E) :  integrated den- 
sity of zeros of the 
partition function 

F(z) = .fvln(z - x)  d/z 

= free energy 
per site 

Partition function per 
site = exponential of 

the free energy 

g(z) = fj dr 
l - - - ) x  ; 

generating function 
of the moments  

fj ~ ; R(z)  = 1 : - z x  

resolvent, or quan tum 
mechanical  Green's  
function 

ctr ; 
U ( z ) =  1 2 - z x  

internal energy 

fj( x) dr; MAs)  = z - s 

Mellin transform 

fz(s) = f ( z  - x / d r ;  

function 

Mz(~) = f (z  - x)'dr; 

Mellin transform 

aIt is the real part of these functions which are in general considered. 

In Section 2 we introduce precise definitions and notations. The 
functional properties of the inverse of the electrostatic Green's function 
("Lyapounov function" in the quantum mechanical language) are derived. 

In Section 3, the analyticity and positivity properties of the functional 
inverse of the Green's function are analyzed, for the quadratic map, both in 
the case X < 2 where the Julia set is connected and for the case ;k > 2 where 
it is a Fatou's dust. The transition point X = 2 appears as a bifurcation, and 
a dense set of "spikes" with dyadic values appears. 

In Section 4, we analyze the heuristic content of the general solution of 
the functional equation fulfilled by the electrostatic Green's function: 

G ( z )  = � 8 9  2 - X) (1.26) 

The general solution of (1.26) depends on an arbitrary periodic function. 
In Section 5, we introduce the Mellin transform, with respect to a 

repulsive fixed point, of the invariant measure d/~. First we analyze in great 
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detail the case of the quadratic map. We show that the Mellin transform 
extends into a meromorphic function, the poles of which are on a semi- 
infinite periodic rectangular lattice. We also analyze some positivity proper- 
ties of the residues on the real negative axis. 

In Section 6, we give a generalization of the meromorphy property of 
M(s) for a large class of rational transformations. 

In Section 7, we show that there exist "trace identities", (8) in the 
polynomial case, which express the fact that the analytic continuation of 
the Mellin transform vanishes at negative integers. 

In the conclusion, we derive a certain number of physically interesting 
consequences, for the quadratic mapping Hamiltonian model, (6) and for 
the Serpinsky gasket mechanical model, (16~ for which it appears that the 
spectral dimension is in a sense necessarily complex, while, for the hierar- 
chical thermodynamical models, one expects complex critical indices. (17) 

2. DEFINITIONS AND NOTATIONS 

We shall, for definiteness, concentrate our attention on the quadratic 
transformation: 

T(z) = z 2 - • (2.1) 

for ~ real, although many of our results extend thoroughly to more general 
cases. The B6ttcher function, (1) is the solution of 

B2(z) = B(z 2 - X) (2.2) 

which is analytic around z infinity, and satisfies for large z: 

B(z) = z + k ilk~ zk (2.3) 
k=l 

When the Julia set is connected, this function maps the exterior of the set 
on the exterior of the unit circle. (1) We shall see later on, in detail, how to 
modify this statement when the Julia set is not connected. 

Introducing the Green's function, as defined in (1.4), by 

G(z) = in B (z) (2.4) 

we have 

g~ 
G(z) = lnz - 

n = l  l~Zn 

which converges for [z] sufficiently large. We have 

O ( z )  = � 8 9  2 - x)  

(2.5) 

(2.6) 
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It is convenient to introduce, instead of the derivative G'(z), the function 
g(z): 

1 G ' ( 1 )  (2.7) 
= 7 7 

the expansion of which, for z sufficiently small, reads 

g(z) = 1 + ~ goz ~ (2.8) 
n = l  

g(z) is the solution of the functional equation: 

' ( z~ ) 
g ( z ) -  I-X  2 g I-X  2 ' g ( 0 ) = l  (2.9) 

which is analytic around z = 0. 
For X real bigger than 2, g(z) has the following spectral representation: 

f_~a d~(x) (2.10) 

where dt~(x) is the balanced invariant equilibrium measure defined on the 
Julia set. (~8) The abscissa a of the rightmost point of the Julia set in the 
complex plane i s  

1 + (1 + 4~) 1/2 
a = a ( ~ ) =  2 (2.11) 

The point a is a fixed point of (2.1). In general, g(z) is given by 

g(z) = s  1--~d~(x) (2.12) 

and G(z) by 

G(z) = ~ ln (z  - x) dl~(x) (2.13) 
J J  

However, in the case )~ > 2, the interest of introducing the function g(z) is 
due to the fact that, the support of the measure d~t being a Cantor set, g(z) 
is a uniform function of z. ~ Its singularities are only essential ones, 
staying on the Julia set. On the contrary the function G(z) is multisheeted, 
and therefore its structure is less transparent. 

Besides these functions we want to introduce the functional inverse of 
G(z): 

E(z) = G(-')(z) (2.14) 

which fulfills 

E(2z) = EZ(z) - )~ (2.15) 
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an equation of the Poincar6-Picard type. (2~ From (2.5), we have to choose 
the solution of (2.5) which is analytic for Rez sufficiently large, and admits 
an expansion of the following form: 

E ( z ) =  ~] 3'ke -kz (2.16) 
k = - - I  

with 

y_,  = +1 (2.17) 

Furthermore, E(z)  satisfies the following relations: 

E*(z)  = E(z*)  (2.18) 

E(z  + iv) = - E ( z )  (2.19) 

Equation (2.19) means that E(z)  is periodic of period 2i~r, and that the 3'2p 
vanish in (2.16). In order to check these relations, we need first to introduce 
the functional inverse ~(B) of the B6ttcher function, which from (2.2) 
satisfies 

~(B 2) = ~2(B ) - X (2.20) 

Using (2.3), we find 

k, 
k = - I  

3'2p = 0, ~, ~ = 1 (2.21) 

Equations (2.16), (2.18), (2.19) then follow from E ( z ) =  c(e~). 

3. POSlTIVITY AND ANALYTICITY PROPERTIES OF THE 
INVERSE GREEN'S FUNCTION 

We consider now the case where X is a real number, which is bigger 
than - 1//4. We shall see that a bifurcation occurs for E(z)  at X = 2. We 
study the function E(z)  solution of 

E(2z) = E2(z)  - X (3.1) 

E*(z*) = E(z) (3.2) 

E ( z  + ire) = - E ( z )  (3.3) 

which for Re z sufficiently large, admits the convergent expansion: 

E ( z )  = ~ 3'ke -k~, 3'-1 = +1 (3.4) 
k = - I  
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3.1. Positivity Properties 

When z increases from zero to + oe on the real axis E(z) increases 
monotonically from a to + ~ in a monotonic way. This is so because G(z), 
which is the inverse function of E(z), increases monotonically from 0 to 
+ oe when z varies from a to + ~ .  The monotonicity properties of G(z) on 
the real axis follow from the fact that it is real on the real axis, and its real 
part being harmonic cannot have a maximum. An equivalent argument 
follows from the fact that B = e a is a conformal mapping. By (3.3), we 
deduce that E(z) decreases monotonically from - a to - oe when z = i~r + 
~, and ~ increases from 0 to + oe. 

Since the function E(z) is periodic with period 2i~r, and real symmet- 
ric, it is sufficient to study it in the strip 0 < Imz  ~< i~r. We notice that, 
from the expansion (3.4), E(z) behaves like e z near infinity; therefore given 

> 0, there exists M > 0 such that for 

Rez > M, e < Imz  < ~ r -  e 
(3.5) 

I m E ( z )  > 0 

But from (3.1) we get 

Im E(z) = 2 Im E(z/2)Re E(z/2) (3.6) 

Equation (3.6) allows us to get rid of the ~ in (3.5): If there exists ~/, 
0 < ~/< c such that I m E ( x  + i~) = 0 and x > M, then (3~ tells us that 
Im E(2Px + 2Pi~) = 0, which contradicts (3.5) for p large enough. A similar 
argument holds for the real part of E, and we have: 

R e z > M } { I m E ( z ) > O ~ r  
0 < Im z  < ~ R e E ( z )  > 0 

Rez>M ) {ImE(z)>O ~'~ "~,,<0 
< I m z < ~ r  ~ OeV~z x 

2 

(3.7) 

Let us call S(M;a, fl) the strip M < Rez, a < Imz  </3.  We know 
that I m E  and Re E are continuous functions of z in the domain of 
analyticity ~ of E(z). Using again (3.6), we see that neither the imaginary 
part nor the real part of E can vanish in the domain S(M/2; O, ~r/2) N _~. 
Therefore in this domain Im E remains positive and also Re E. In the same 
way, we have, by considering the image by the transformation z ~ z/2 of 
the strip S(M;~r, 27r) that neither I m E  nor R e E  can vanish in S(M/2; 
~r/2, ~r) C? 2 .  Therefore Im E remains positive in this domain, while Re E 
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remains negative. This procedure can be iterated and we get for z ~ _~, 

I m E ( z )  > 0 for 

R e E ( z )  > 0 for 

Re E(z) < 0 for 

The domain 2 will be described in 
formulas, there is no equal sign. 

0 < Imz < 9r (3.8) 

0 < Rez < ~r/2 (3.9) 

~r,/2 < Rez < ~r (3.10) 

the next section. In the previous 

3.2. Analyt ic i ty  Propert ies 

We now consider 

E ( z / 2 )  = [ E ( z )  + ~], /2 (3.11) 

the determination of the square root being chosen by continuity starting 
from the positive real axis, where E(z)> 0. Then (3.11) shows that since 
E(z) is analytic for Rez  > z 0, it will stay analytic in Rez  > Zo/2, provided 
there are no solutions z c of 

E(zc) = -;~ (3.12) 

in the region Rez > z 0. For )~ real and positive (3.12) implies that z c = i~r + 
A where A satisfies 

E(A) = ~ (3.13) 

From the previous inequalities (3.8), A has to be real and positive 
(mod2i~r). From the monotonicity properties of E(z) for z real and posi- 
tive, we have E(z) >1 a()~), Vz >> O. Therefore (3.13) has a solution, if and 
only if 

X/> a(X) (3.14) 

and the solution is unique if it exists. (3.14) has a solution when )~ ) 2 (see 
2.11), and no solution for 0 < ;k < 2. A similar argument shows that there is 
no solution for (3.12) when - 1 /4  < )~ < 0. As a first conclusion, we see 
that for - 1 /4  < X < 2, E(z) is analytic in Rez  ~> 0, and therefore E(z) 
maps the imaginary z axis on the Julia set. At X -- 2 a bifurcation occurs, 
E(z) has a zero at z = (i~r/2) (mod2i~r), and for ~ > 2, E(z) is singular with 
a square root branch point at G = A / 2  + & / 2  where A is given by 

A = G(X) (3.15) 

The function )~ + E(z) has a simple zero at z = A + iTr because 

E'(A) > 0 (3.16) 



86 Bessis, Geronimo, and Moussa 

E(z) being a monotonically increasing function of z on the positive teat 
axis. From the functional equation, we see that E(z) will have square root 
branch points at all points deduced through the functional Eq. (3.1) from 
z c = A + i~r mod(2i~r), that is, 

(2k + 
z~ ' k -  2D + i  2" ' n =  1,2 . . . .  , k ~ Z  (3.17) 

The analyticity and positivity properties of E(z) for 3, > 2 are best visual- 
ized on Fig. 1. 

The occurrence of this dense forest of "spikes" is better understood if 
we go back to the B6ttcher function. (4) For X > 2, this function maps the 
Julia set (Fatou's dust in this case) on the unit circle. However, the inverse 
map is analytic on the complement of the unit disk to which have been 
added "spikes" along rational dyadic angles, of the form (2k + 1)7r/2", the 
length of the "spikes" being e A/2~ These "spikes" are just the images of the 
open intervals between points of the Cantor set. 

This analysis does not extend to the case X < - 1 /4  where the fixed 
points become complex. To end this section, we give for X = 0 and X = 2 

Fig. 1. 

Z 

2iR 
7in/4 L ........... ~ 
3iFi/2 IL.. ........... ~ .mE(O. ReE=O 
Sill/~ 
in ~ IrnE=O, ReE(O izc 
: l i r l / / ,  I . . . . . . . . . .  7-#.~ ' . / ' ' ' ~ 1  z c 

in/4 ~ , ~ " -  I ', 
_ I / { ImE=O, ReE)O I 
o ~ A /2  A - 

-i l l / /* I .......... ~ 

- 3 i I ] 1 4 ~  

- 3in/2 ~ " ~ - - 2 ~ - "  
- 7 i 1 - 1 / 4 ~  

2IN 1 " i  

IrnE (0, ReE)O 

linE (0, ReE(O 

linE)O, ReE(O 

ImE)O, ReE)O 

Re z 

Analyticity and positivity properties of the inverse Green's function for k > 2. Only 
singularities for n = 1, 2 are displayed. 
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the explicit expressions of the various functions we have introduced:  

Z -{'- ( Z  2 - -  4) !/2 
= 2 :  B ( z )  = 2 , B - l ( z )  = z -{- 1 

z 

Z "4- ( Z  2 - -  4) 1/2 
G(z )  = in 2 , E ( z )  = 2 c o s h z  

X = O :  

g ( z )  - 1 

(1 - 422) 1/2 

1 dx x E J = [ - 2 , + 2 ]  
d~(x)  - ~r (4 - x2) 1/2 ' 

B ( z )  = z ,  S l ( z )  = z 

G ( z )  = lnz,  E ( z )  = e z 

g ( z )  = 1 

d~ ( O ) = 2-~ dO, J = ( z = e '~ }, 0 < 0 < 2 ~r 

(3.18) 

(3.19) 

4. HEURISTIC ANALYSIS OF THE BEHAVIOR OF THE 
GREEN'S FUNCTION NEAR THE FIXED POINT a 

In this section we will sketch some formal properties of the functional  
equat ion (2.6), in order  to convince the reader  of the interest of introducing 
Mellin transforms. Setting 

z = a + ~ (4.1) 

and 

we rewrite (2.6) as 

G(a  + 4) = G(~) (4.2) 

J G (4) = 

We seek a formal  solution of the form: 

c0(f) = ~ ~ ~n(~/2a) ~ 
n = O  

Then  we have 

(2a)~ ~ g k ~ I  1 + ~ / 2 a ]  k+~ 
, =o  ~ n ( ~ / 2 a ) " -  2 k=0 

(4.3) 

(4.4) 

(4.5) 
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which determines a: 

(2a) ~= 2 
(4.6) 

ln2 + 2i~rm m ~ Z 
a -~ -  a m - -  In 2a ' 

We shall consider the special solution corresponding to m---0; the other 
solutions will be considered later. For ), > - 1/4, we have 

2a > 1 (4.7) 

and therefore 

From (4.5) we get 

_ ln___2 > o (4 .8 )  
a ~  - In  2 a  

n-I 

Fixing g0 = 1, to normalize this solution for (4.3), we see that because 
2a > 1, for 7t > - 1/4, all ~, can be computed from the above recursion 
relation. This defines a formal solution of (4.3). In fact one can prove that 
the series expansion (4.4) has a finite radius of convergence, but the proof is 
not a direct one and we do not intend to give it here, since we use here only 
formal arguments. 

Considering now the equation (2.6): 

G(z)  = �89 2 - )~) (4.10) 

let p ( x )  be any periodic function of x with period ln2: 

p ( x  + ln2) = p ( x )  (4.11) 

Then one checks immediately that we get another solution of (4.10): 

G(z)  = Go(z)p[ ln  G0(z)] (4.12) 

where Go(z ) is any particular solution of (4.10), and we can choose for it 
our previous solution (4.4). If we restrict ourselves to the class of periodic 
functions p, which admit a Fourier expansion: 

m = + o ~  

p(X)= E Pm e(2i~rm/ln2)x (4.13) 
m =  - - ~  

then we have: 
m ~  q -  c ~  

G(z) = E pm[Go(z)] l+2i~m/ln2 (4.14) 
m =  - - ~ x ~  

In particular we see that the solution (4.6) which corresponds to m E Z is 
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simply related to G O by 

Gm(Z ) = [ Go(Z)] l + 2i~rm/ln2 (4.15) 

Therefore, another way to write (4.14) is 
m = + o e  

G ( z ) =  ~ p, ,Gm(z ) (4.16) 
r n =  - - o o  

which expresses the fact that the solution of (4.10) is formally expanded in 
the basis of the "elementary" solutions G m. Finally, expanding the Green's 
function G(X)(z) around the point z = a, we have using (4.14), (4.4) and 
(4.6): 

~ ( X ) ( ~ )  = 2 ])m~In2/In2a+2i~m/ln2a gn ~a 
m =  - n = 0  

= 2 ~ Pmgnm~ ln2/In2a+n+2i'rrm/ln2a ( 4 . 1 7 )  

m = - - ~  n = 0  

the ~m being the coefficient of the expansion of the Gm(~)- We shall 
consider (4.17) as an asymptotic expansion of G(~)(~) near ~ = 0, that is 
near z = a. Using the fact that G(~)(~) is real for ~ > 0 and that 

Gm*(Z) = G_m(Z ) (4.18) 

which implies 

~n-m = ~ffm (4.19) 

we see that 

Setting 

P-m = Pm* (4.20) 

pmg m = o,~ e ir,: 

where 02 and Cpm ~ are real numbers and 

r = 0 

we get, 

(4.21) 

(4.22) 

From (4.22) or (4.17) we can also obtain an asymptotic formula for the 
measure "density" o(x).  Using 

G(X)(z) = ~'ln(z - x ) d ~ ( x )  = ['In(z - x ) ( r (x )dx  (4.24) 
JJ JJ 
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o r  

we see that 

dG(X)(z) _ c,~(z) =s o(x)&__z_x_ (4.25) 

o ( x )  = - __1 l im G'(X)(x + ie) (4 .26 )  
'/7" e--->0 + 

therefore a(~) will have for asymptotic expansion an expression analogous 
to (4.17) except for the change of n into n - 1: 

with 

m = + o o  

0 ( ~ ) ~  E E Om,n ~ ln2/ ln2a+n+2icrm/ ln2a-I  

m = - - o o  n = O  
(4.27) 

* (4 .28 )  Orn,n ~ 0 m,n 

Such an expression is made more transparent by introducing the 
Mellin transform M(s) of the measure d/x(8): 

M(s) s - x ) ' d . ( x )  = - x ) ' o ( x ) &  = (a ; ( a  (4.29) 

Equation (4.27) shows that M(s) is a meromorphic function of s: 

M(s)  = Gm ,~= - ~  ~=0 s + l n 2 / l n 2 a  + n + 2i~rm/ln2a + regular part 

(4.30) 

Therefore we expect the Mellin transform of the measure d~(x) to be a 
meromorphic function with poles on a periodic semi-infinite lattice in the 
complex plane, defined by 

where 

Sm, n = -- OL 0 -- tl "1- irm- 
(4.31) 

n E N ,  m ~ Z  

2~r In 2 (4.32) 
T -  l n 2 a '  a ~  ln2a  

Conversely, if we can prove that M(s) is a meromorphic function with 
poles at points (4.31), this result will suggest that o(x) will have in some 
sense an asymptotic expansion (4.27). This expansion is certainly only 
asymptotic, o(x) being nonzero only on a Cantor set in the case X > 2. 
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5.1. Definitions 

One way to give a r igorous suppor t  to the previous section, is to 
in t roduce the Mellin t rans form of the invar iant  equil ibrium measure  d/z 
associated to a Julia set J ,  namely,  

Mz(s ) = ~ e  sIn(z-x) dtz(x ) (5.1.1) 

where J is the Julia set, and  z is a par t icular  point  of J .  To  define the 
ln(z - x), we cut the complex  plane in the variable x by a line jo ining z to 
~ ,  as in Fig. 2. We  int roduce the Green ' s  funct ion G(x) for po lynomia l  
mappings ,  with a suitable choice of the b ranch  of the logari thm: 

G(x) = ( l n ( x  - y )  d ~ ( y )  (5.1.2) dj 

If  we assume the cut in Fig. 2 to be chosen along a line which connects  z to 
infinity wi thout  intersecting J ,  we can rewrite (5.1.1) as 

M~(s) = 1 ~eSi,(~-x) da(x)  (5.1.3) 

where I" is a contour  which encircles the Julia set and  passes through z, as 
shown in Fig. 2. Clearly all formulas  (5.l.1) or (5.1.3) define Mz(s ) as an 
analyt ic  funct ion of s as shall be  seen in the sequel. 

b/5 
Im x 

e x 

Fig. 2. The Julia set and the cut of the logarithmic function in the definition of the Mellin 
transform. 
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Although m a n y  of our  results extend to more general cases as dis- 
cussed in Section 6, we consider here the map:  

T(z )  = z 2 - X (5.1.4) 

with ~ real > - 1/4.  We choose z = a, where a is the following fixed point  
of T: 

1 + (1 + 4~) 1/2 
a = 2 (5.1.5) 

with 

a = a 2 - ~ (5.1.6) 

We shall therefore drop the index z and write 

M ( s )  = f je  s'n(a-x) dla(x) (5.1.7) 

the logari thm being cut in the x complex plane f rom a to + 0e, and defined 
by 

ln(a  - x)  = ln[a - x I - iv + i Arg(x  - a) (5.1.8) 

where the Arg z is by  definition between - 7r and + v. The invariance of d/x 
under  the change x ~ - x  allows us to write 

M(s )  = f j e  s ln(a+x) d~(x) (5.1.9) 

where 

ln(a + x) = lnla + x I + i a r g ( a  + x)  (5.1.10) 

Before going any further, we notice that, if we consider the first preimage of 
a, distinct f rom a itself, that  is - a ,  we have 

M _  o (s) = f f s  ln~ - o - x~ d r  (x)  (5.1.11) 

where the cut  is now from - m to - a, and 

ln(a  - x) = ln[a + x I + i~r + i A r g ( a  + x) (5.1.12) 

Compar ison  of (5.1.10) and (5.1.12) shows that 

M .(s )  = e'~SM(s) (5.1.13) 

therefore M_a(s  ) displays the same analyticity properties as M(s).  In the 
same way, taking the preimages of - a ,  that  is, + 0 t - a) 1/2, we have, using 
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the invariance of the measure, 
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( e x p  sln (?t - (5.1.14) 

= •  [ ' e x p ( s l n [  ( X -  a) ' / 2 -  (Tt - x)1/2] } d~(x) 2 JJ 

+ (,11,) 

= ! ( e x p  s l n x  2j [ ( - a ) ]  

• e x p { - s l n [ ( h -  a) 1/a + ( h -  x)1/2]} dlx(X ) 

�89 sln[(X (X (5.1.16) + ,j ( L  --a)l/2 + --X)I/2]} dp'(x) 

In the latter equation, the second integral defines an entire function of s, 
except for X = 2, where it is equal to the first up to a factor e i~s. The 
analyticity properties of the first integral in (5.1.16) is the same as for M(s). 
It is not difficult to convince oneself that, with suitable choices for the cuts, 
all the M functions attached to preimages of a will have the same type of 
singularities located at the same points. Of course one should not draw any 
conclusion for the closure of these preimages, which is the whole Julia set. 

5.2. Meromorphic Properties of M(s) 

Since fjdtx is finite, it is clear from (5.1.7) that M(s) is analytic in 
Res > 0. In order to continue M(s) analytically in Res < 0, we shall first 
derive a functional relation for it. In this section we will consider ?t real and 
positive. It is convenient to split the Julia set into two parts: J-+, where the 
+ sign refers to the set with positive real part, and the - sign to the one 
with negative real part. These two subsets are symmetric of one another 
with respect to the Im z axis. Starting from 

M(s) -  (eSln(a-x) aJ +esln(a-x) dtI+ (dJ -esln(a-x) d[t (5.2.1) 

we observe that 

H(s) - (  e "l"(a-x~ db~(x) (5.2.2) 
- -  d J  - 

is an entire function of s, since a $ J . Making use of the invariance of the 
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measure, we get, for Res > 0, 

M(s)--  aj~esln(a2-x2) dp,(x)= 2 ;  +e ~ln(a2-x2) dlz(x) 

(a-x) I" 
= 2(2a)'f~j+e ''"(a-x> 1 2a ] dtx(x ) (5.2.3) 

Now for X > 0, x ~ J + ,  we have (2a) > 1 and 

a - x  < a - ( X - a )  1 /2_2a  < 
] -~-~-- ] 1 (5.2.4) 

which allows us to expand (1 - [(a - x)/2a]} s in an absolutely and uni- 
formly convergent series. Therefore we get for Re s > 0 

X M(s)=2(2a)  s ~ ( .I ( - 1 ) J  [ M ( s + j ) -  H ( s + j ) ]  (5.2.5) 
j=o\YJ (--~a) j 

which can be rewritten as 

[ I  - 2(2a)S]M(s) = -2(2a)SH(s) + 2(2a) s 

s. 1 ( - I ) Y [ M ( s + j ) _ H ( s + j ) ]  (5.2.6) X ~ ( ' ]  

The right-hand side is easily shown to be convergent for Res > - 1. H(s) 
being entire in s, M(s) being analytic in Res > 0, and (~) being a polyno- 
mial in s, we see that (5.2.6) allows one to continue M(s) analytically from 
Re s > 0 down to Re s > - 1 as a meromorphic function, with poles at 

So,,, = s o + imr, m ~ Z (5.2.7) 

ln2 
So - In 2a 

(5.2.8) 
2~r T - -  

ln2a  

Repeating the argument, we find that M(s) extends into a meromorphic 
function in Res > - ( n  + 1), with poles at 

s,,,m = s o -  n + imr, n ~ N, m @ Z (5.2.9) 

Since this is true for any n > 0, we conclude that M(s) is meromorphic in 
the complex plane C, with poles on a semi-infinite rectangular lattice J .  

For X > - 1 / 4 ,  we introduce the entire function: 

- f I  ~r(s) - ~=o [1 - � 8 9  (5.2.10) 

where 
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The infinite product converges since 2a > 1. We see that the zeros of this 
function are all simple and located precisely on the semi-infinite lattice J .  
When )t > 0, we have seen that M(s) has only simple poles on J .  
Therefore we can express 

M(s)  - ~r(s) (5.2.11) 

where c(s) is an entire function. We shall see later how to extend these 
results to more general values of •. 

5.3. Integral Representation for M(s), Residue Properties 

We start from formula (5.1.3): 

M(s)  = (csln(a-x) d~(x) = 1 ~esln(a-X) dG(x) (5.3.1) 
j j  ~l~ Jr' 

Going to the inverse function E(y)  of the Green's function: 

a(x) =y 
(5.3.2) 

x = E ( y )  

we get for Re s > 0 

M(s)  = 1 ~'e.,n[a-e(y)] dy (5.3.3) 

the integral being taken along a path F shown in Fig. 3. 

ill 

Im y 

B 

iFI/2 

- iF1/2 

- i n  
B 

r, 

Re y 

L 

Fig. 3. The path F in the complex plane. B is the image (periodic) of b in Fig. 2. 
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Rewriting (5.3.3) for Res > 0, we get 

1; M(s) = 2 ~  {e 'ln["-e(y)l - e ~(-i'+y)} dy 
+ 

1 v s  ( 5 . 3 . 4 )  + ~t~ f~ (esln[a-E(y)l -- e'(i~+y))dY+ sinTrs 

We can now push B toward infinity (see Fig. 3) along the line Im y = _+ ~r, 
and we get 

M(s) = sin rrs~ fO~ __ e,y] dy+ sinvrS~rs (5.3.5) 

This representation is valid for 0 < Re s < l, as can be seen using the 
expansion (2.16). Therefore both sides in (5.3.5) represent the same analytic 
function. 

Now we cut the integral in the right-hand side of (5.3.5) into two parts, 
one integrated over (0,A), the other over (A, oo). Defining 

M(A, , )  = fOAl E(y)  - a]" (5.3.6) 

o n e  finds 

M(s) = -  sinj--~S M(A,s)  + sin Trse ~4s 
q7 q';S 

sin=s a l s -  } + (5.3 

which shows that the poles and residues of M(s) and ( - s i n  ~rs/~r)M(A, s) 
coincide. 

Using the functional relation (2.15), we can write for Res > 0: 

M( Y/2",s) = (g /2" [  E(x) - a]" ds 
,]0 

s 

= Lt~a) )0 kE(x) als E(x) - a 

Since E(x) is an increasing function of x, we see that, if we choose n large 
enough so that 

E( Y/2  n+ I) < 3a (5.3.9) 

we can expand the integrand of (5.3.8) in a uniformly and absolutely 
convergent series. Thus we get 

( ) M ( Y / 2 " , s ) = 2 ( 2 a )  s ~ s 1 M Y + j  (5.3.10) 
(2a)J ~ ,s 
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Defining 

W(~,s) = s  '~ [ E ( x ) - a ] ' d x  (5.3.11) 
a/2 

we have 

M ( Y / 2 " , s )  = M ( Y / 2 " + ~ , s )  + W ( Y / 2 n ,  s) (5.3.12) 

Therefore 

[1 - 2(2a)~]M(Y/2"+ ' , s )  

j= ,  (2a)J 2~77 ,s + j  (5.3.13) 

The right-hand side is analytic for Res > - l; therefore, the left-hand side 
is also analytic and this formula can be used to evaluate the residues. 
Moreover, each term in the series goes to zero when n goes to infinity, and 
since the series is uniformly convergent, only the first term on the right- 
hand side remains nonvanishing when n goes to infinity. Therefore we get 
the following representation for the residues. The poles at 

s = So, m = s o + irm (5.3.14) 

have for residues 

sin(~rS~ ('Y/2" [U(x)  - a]*~ (5.3.15) r = ro. m = 2 in l j y /2 ,+ ,  

Using in (5.3.13) the same kind of argument given earlier, to obtain the 
position of the poles (5.2.8) for M(s) ,  we see that M A (s) has its poles at the 
same points. In particular when s o is not an integer, which implies X v ~ 0, 
there are no poles at negative integers. As a consequence (5.3.7) shows that 
M(s )  vanishes at negative integers. This result, usually called "trace identi- 
ties", (8) will be generalized to more general polynomial maps in the next 
chapter. Notice here that, from the above arguments, meromorphy proper- 
ties of M(s)  persist for all 2~ > - 1/4. The restriction ~ > 0 in the previous 
section was only useful to simplify bounds like (5.2.4). 

Let us end this section with some properties of the residues, which are 
established in an Appendix. 

(i) The residues of the poles of M(s )  on the real negative axis, are 
strictly positive for 3, > 0. In particular they do not vanish, which is not 
obvious from (5.3.15). 

(ii) In formula (5.3.15), the right-hand side is independent of Y, since 
the integrand can be shown to be related to a periodic function of Y, with 
period In 2. 
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In the particular cases X = 0, )t = 2, we have, respectively, 

M ( s )  = 1 

F(s + 1/2) 
M ( s )  = 4" 

+ 1) 

When X = 2, 4-SM(s) is a 
sn, o = - ( n  + 1/2), n = O, 1,2 . . . .  and residues: 

1 r(n  + 1/2)  1 
rn'~ ~- I'(n -t- l) 7rfn n large (5.3.18) 

One checks immediately that they are positive. In the case 2, = 2, there are 
no complex poles, which means that the residues vanish except on the real 
axis. 

(5.3.16) 

(5.3.17) 

Stieltjes meromorphic function with poles at 

6. GENERALIZATION TO RATIONAL TRANSFORMATION 

For convenience, we consider first rational transformations with an 
attractive fixed point at infinity, and a real repulsive fixed point z 0 with real 
and positive multiplicator. Furthermore we assume that it is possible to join 
z 0 to m along the real axis without encountering the Julia set J.  We shall 
comment  on these restrictions at the end of this section. 

Let /~ be the unique invariant balanced probability measure (3~ asso- 
ciated with J,  and define now the Mellin transform relative to the point z 0 
by 

M~o(S) = ; e  s In(z~ x) d/~ (x) (6.1) 

Here we take the cut of the logarithm to be along the real axis from z 0 to 
m. Let now be T~-l(z), i = 1 , 2 , . . . ,  N be the N inverse branches of T(z).  
In particular we define T l- l(z) to be the special inverse branch for which 

r 1- l(z0) = z 0 (6.2) 

We notice that this branch is unique, since otherwise z 0 would be supersta- 
ble, violating the hypothesis that z o is a repulsive fixed point. Consider now 
AJ as the subset of J contained in a neighborhood K of Zo, where K is 
chosen small enough to insure that T -  I(K) C K, and a fortiori T -  1(A J )  
c A J,  which is possible since z o is repulsive. We have 

Mz0(s)= ( esln(z~ d~(x)+(e"n(z~ (6.3) 
dAJ dCaj 

Under the previous hypothesis, from which follows in particular the fact 
that the Julia set is compact,  the second integral defines an entire function 
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of s. Setting now 

AM(s) =( e s'n(zo-x) d i ( x  ) (6.4) 
d A J  

it is clear that all singularities of M(s) in the open s plane are contained in 
AM(s). The balance and invariance properties of i allow one to write 

i f ( E ) =  i [  T - i ( E ) ]  = N i l  T i - ' ( E ) ]  (6.5) 

and 

i 

for any measurable set E and f E LJ(di).  Thus 

AM(s)  -- u f r  e sln[z~ dlz(X ) 
1 I ( A J )  

,-'(AJ) ZoO- x dlz(x) (6.7) 

where we have also chosen AJ small enough so that the rational fraction 
Tzo(X ) = IT(z0) - T(x)]/(z  o - x) has no zeros or poles in the neighborhood 
K of AJ. This implies that [T~0(x)]S is an analytic function of x in K. Then 

tj(x - zo)J + (x - Zo)"R,(x,s ) (6.8) 
j = l  

where R, (x, z0) is a uniformly bounded function for x in K and for s in any 
compact subset of the s plane. Consequently, 

AM(s) = N[ T'(z~ j=~]l tjAMI(S + j )  + , '(aJ) (z~ - " R " ( x ' s ) d i  

(6.9) 

where 

AMI(S) = fr, I(AJ) es in(z~ d l  (6.10) 

and t o = 1. We notice that the last integral in (6.9) is analytic for Res > 0. 
Writing (6.4) as 

AM(s) = AMl(s ) + AM2(s ) (6.11) 

where 

AM2(s) = acCT '<~ (z~ - x)~ d# (6.12) 
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it is clear that the above function is entire in s. Substituting (6.11) into (6.9) 
yield s 

[1 - NT'(zo) ']M,(s  ) 

= N[ T'(zo)is 

] • ~. ~AM,(s + j )  + ( (z o - x)S+'R.(x,s)dtx(x)  - ZXM2(s ) 
j = 1 .)T- ~(zxJ) 

(6.13) 

Since the right-hand side of (6.13) is analytic for Re s > - 1 ,  this implies 
that Ml(s ) and therefore M(s) will be meromorphic for Res  > - 1  with 
poles at SO,m: 

- i n N  + 2i~rm 
So, m = in T,(z0) , m E Z (6.14) 

Repeating this argument we see that M(s) is a meromorphic function with 
poles at 

Sp, m = SO, m - -  p ,  t ) E N (6.15) 

Let us now comment  on our hypotheses. 
(i) If T'(zo) is real negative, we can apply the previous argument not 

to T but to the second iterate T(T(z)), for which the multiplicator is real 
and positive, and which has the same Julia set, the same fixed point z 0, and 
the same invariant measure, as T(z) itself. 

(ii) When z 0 belongs to a cycle of order p, one applies the argument 
on the pth  iterates. 

(iii) More generally, for a complex fixed point of a rational complex 
transformation, one can still apply the argument on a suitable iterate when 
the multiplicator is a root of unity times a real number > 1. 

(iv) A more serious problem in the general case of a complex 
transformation is the question of accessibility, that is, the question of 
joining the fixed point on the Julia set to infinity through a line that does 
not encounter the Julia set J .  Moreover we need to be able to deform the 
initial cut to the transformed cut without meeting the Julia set. In such a 
case our argument will apply and give a precise meaning to the equation 

U(T'(zo)) ' --  1 (6.16) 

the solution of which will be of the form (6.14), with a suitable determina- 
tion for the exponentiation. 

We think that these problems are related to the local structure of the 
Julia set. (aO However, we think that the meromorphic property of M(s) 
may be quite general. The reason is that we can cut the complex plane in 
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(6.1) along a logarithmic spiral centered around z 0 and invariant under the 
multiplication z-~ (T'(zo))Z. Going from one sheet to the other, multiplies 
M(z) by a factor e 2i~ks, k integer, so, unless the Julia set covers the whole 
plane, (221 one can think to draw such a cut starting from z 0 and going to 
infinity. The idea is then that, in the vicinity of z 0, the cut is itself invariant 
under T, and then the meromorphy would follow from an argument similar 
to (6.13), provided we can also obtain in this case the suitable minimal 
analyticity domain for M(s) required to start the argument. 

7. TRACE IDENTIT IES FOR POLYNOMIAL  TRANSFORMATIONS 

We keep here the same assumptions for T(z) that were given at the 
beginning of Section 6, and we further assume that T(z) is a polynomial, z 0 
is again a real repulsive fixed point with a real positive multiplier. 

Using (5.13) one has 

1 ~reSln(zo-X)G,(x)dx (7.11 Mzo(S ) = 

where now G'(x) satisfies the following functional equation: 

r'(x) 
G'(x ) -  U G'(T(x)) (7.2) 

Here N is the degree of the polynomial T. Opening the contour F as in Fig. 
2, and taking into account that G'(x )~ l / x  at infinity, we see that for 
0 < Res < 1, we have, as in (5.3.5), 

Mzo(s)- sin ys  ~z~[(X_zo)SeSG(X)]G,(x)dx+ sin~s (7.3) 
57 o ' f ig  

Dropping the index z 0, we write 

M(s) = - sin~rs [ M 1 ( s ) +  M2(s)] + sin~rs (7.4) 
7/'S 

where 

and 

M,(s)= f z : ( X -  Zo)SG'(x)dx (7.5) 

Noticing that M2(s ) is analytic for Re s < 1, we shall investigate the 
analytic structure of Ml(s ). Making the change of variable x ~ T(x) and 
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using (7.2) yields 

M,(s) = N fr'-'(Y)(T~zo 1 x - Zo)SG'(x)dx (7.7) 

where again T l- l is the inverse branch of T such that Tzol = z 0' This in 
turn can be written 

= o (x - Zo) ~ T(X)x_-z o z~ G'(x)dx (7.8) 

Now using once more the arguments given in Section 5, we find that Ml(s ) 
is a meromorphic function with poles given only by (6.14) and (6.15). 
Provided T'(zo)~ N l/p, for any positive integer p, M(s) will vanish at all 
negative integers: 

M ( -  n) = 0, n = 1,2 . . . .  (7.9) 

Such a relation, usually called a "trace identity", (a) will give us sum rules 
which we plan to analyze in a later work. 

8. CONCLUSION 

Let us conclude this work with some comments  on its mathematical 
and physical aspects. 

8.1. Mathematical Aspects 

Throughout this paper, we have considered an invariant and balanced 
measure /x on a Julia set J generated by the rational fraction: T(z)= 
N(z)/D(z),  of degree N. An intuitive description of this measure is 
obtained from the asymptotic distribution of the predecessors of an arbi- 
trary point in the complex plane: at order k, we consider its N k preimages, 
on which sit Dirac measures with weight N -k, added together to build up a 
discrete probability measure. The invariant measure is thought to be the 
weak limit of this sequence. (2) When such a limit exists, we can consider the 
associated "free energy" F(y) defined in (1.22), or more conveniently, the 
generating function of the moments: 

7 ~  x - ~ 1 (xnelz(x)  (8.1) 
n=0  n=0 y n  J J  

which satisfies 

y T'(y) y n ' ( y )  (8.2) 
g ( Y ) -  N T(y) g (T(y ) )+  N D(y) 
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This last equation permits recursive generation of the moments gn provided 
g(y) is analytic in the vicinity of the point at infinity, which is true when J 
is bounded, that is, when the point at infinity is an attractive fixed point of 
T. In fact the point at infinity plays no special role since a linear fractional 
change of coordinates allows us to extend these considerations to any T 
having an attractive fixed point. We must certainly exclude the case where 
J is the full complex plane, (22) and we leave aside the problem when only 
indifferent or repulsive fixed points occur. The quadratic polynomial case 
already exhibits a sufficiently complicated situation (23'24) to give an idea of 
the difficulties of the general case. 

The equations (8.2) and (1.22) generalize to rational fractions the 
equation (t.5) valid in the polynomial case. Notice that (8.2) has the 
substantial advantage of being uniform in the vicinity of the point at 
infinity. The existence of the weak limit mentioned above has some relation 
with the convergence of the iterations of Eq. (1.22): 

F ( y ) =  K=oN----Ug W~, 1 ln[D(Tk(y)] (8.3) 

which is easily shown to be convergent in each basin of attraction of any 
attractive fixed point or cycle of T. 

In the present work, we have mainly been interested in the behavior of 
the above function F(y) near the boundary of its analyticity domain, a 
question to which a partial answer can be given using the functional 
equation (1.22). This problem is related to the asymptotic behavior of the 
entire (or meromorphic) functions introduced by Poincar6 and Picard. (2~ 
Here we have analyzed the local structure of F(y) near a repulsive fixed 
point through the analyticity properties of the Mellin transform (6.1), which 
has been shown to be meromorphic. We further notice that when the Julia 
set is real and when z 0 is the rightmost fixed point, the Mellin transform 
coincides with the following function: 

~rzo(S ) -- ; ] Z o -  x[ s dl~(x) (8.4) 

We may ask whether Mzo(S ) has also meromorphic properties in the general 
case, and also analyze linear superpositions of such functions on the 
various repulsive fixed points of J. Our intuition is that such a generalized 
function could be connected with the ~ function approach in global 
analysis of dynamical systems, ~2s) and to their generalizations considered in 
the study of the Hausdorff dimension of Julia sets. ~26) 

We consider now the case where the Julia set is real. We shall discuss 
the content of the approximate expansion (4.23) of the integrated measure's 
density. A first consistency consequence of (4.23) is to provide an asymp- 
totic behavior for the moments of the measure, which can be recursively 
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computed from Eq. (1.5), through an expansion around the point at 
infinity. The algebra is straightforward and was already given in a different 
context. (27) From (4.27), we deduce that in the quadratic case, for )t real, 
and n large 

g2 ,~=(x2nd t~ (x )~a2~(a  ) ~~ 
aJ  

where % and r are given in (4.32) and a in (2.11). The oscillatory part is 
well observed in numerical calculations and the amplitude of the oscillatory 
part is significant (of the order of 10% of the constant part for X = 3 and 
)t = 1 for instance). Of course this oscillatory part disappears when X--2 .  
This gives a numerical confirmation of the consistency of the scheme we 
have developed. 

The existence of complex poles in the Mellin transform is also con- 
firmed through a multipoint Pade analysis of Ma(s ) itself. In fact the 
positions of the complex poles closest to the origin are well reproduced 
(when)t  =~ 2) by the position of the poles of the Pade approximants which 
take the same values as Ma(s) for n positive integer (0 -<< n < N). However 
the complexity of the analytic structure of M~(s) which arises from the 
lattice of poles, necessitates further work for a precise evaluation of the 
residues. 

8.2. Physical Aspects 

The physical consequences are twofold: first in quantum mechanical 
systems, second in statistical mechanics. We will summarize here the 
content of the quadratic mapping Hamiltonian model, (~6) which we regard 
as a paradigmatic example of a Schr6dinger operator with purely singular 
continuous spectrum. One considers a one-dimensional quantum mechani- 
cal system on a lattice (integers). Supposing the existence of a decimation 
operator D, which acts on the wave function q,~ at site n as 

D+n = ~2n (8.6) 

that is, by suppressing a component out of two in the wave function, it is 
then possible to show the existence of an Hamiltonian H subject to the 
algebraic constraint 

HD = D(H 2 - ~), )t > 2 (8.7) 

This condition is fulfilled by choosing for H a tridiagonal Jacobi matrix. (6~ 
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Then if I+) is a (quasi) eigenstate of H with eigenvalue E, D ]~) is also a 
(quasi) eigenstate with value E 2 _ ?t. The main results about this model are 
as follows: 

(i) The spectrum is purely singular; its support reduces to a Cantor 
set of Lebesgue measure zero, consisting of all points of the form 

;'t")'" 
which is nothing else than the Julia set associated to 

r(z) = z 2 - X, ?t > 2 (8.9) 

(ii) The wave functions are the set of orthogonal polynomials Pn(E) 
with respect to the equilibrium measure defined on the Julia set. 

(iii) The resolvent (in the state 1+) with ~b n = 6n,o) 

(6  0 ~ 60 ) =;d/~(E)zZE (8.10) 

is the generating function of the moments of d/~ and in this case /~(E) is 
also the integrated density of states. For physical reasons (specific heat, 
phonons), it is of interest to study the excitation spectrum near its end 
point. In general one writes for the spectral density a power law, deduced 
from scaling arguments, (9'1~ of the following form: 

d~(E)  
d E  - o ( E ) ~ C ( a  - E )  6, Een d = a ( 8 . 1 1 )  

where 3 is the spectral dimensionality. (~~ One of the unexpected results of 
our work is that such a formula is too simple in our case, a full set of 
complex values of 3 must be added to the previous expression (8.10). It is 
likely to be the same in more general Hamiltonians with singular continu- 
ous spectral measures (almost Mathieu equation, for instance). The same 
observation holds for mechanical systems on fractal structure. (16'3~ 

In statistical mechanics, the scaling laws near the critical point have to 
be corrected and oscillatory contributions occur which can be interpreted 
as an oscillatory character of the critical amplitudes. Such pathologies are 
usually excluded in regular translation invariant systems, (2s) but must be 
encountered in systems when the renormalization is exact and rational. (12) 
This may also be an explanation for the oscillatory behavior encountered in 
calculation of thermodynamical quantities by approximate renormalization 
group techniques. (29) One may wonder whether such oscillations should 
persist in disordered system (17) or in complex magnetic fields, (29) when 
considering the exact models and not their truncated (or hierarchical) 
approximations. 
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APPENDIX: PROPERTIES OF THE RESIDUES 

Starting from formula (5.3.15), we get, after a change of variable, 

[ (  ..... sin(ws~ lim (O x__~_ E x (A1) 
r~ = 7rln(2a) , - ~ J y  2,+1 2--2Z 7 - a 

Using (2.15) and (5.1.6), one finds 

2 x  ' [E  ( 2 _ ~ ) _  a]S0,m= x[ E ( x ) - a ]  .... (A2) 
HT__+;{I + 1/2a[E(x/2i )  - a]} "~ 

we define 

Fso,,,,(x)= lim x [ ( x ) I .... ,_~o~2-T;;+ l E 2--2T?+ 1 - a  (A3) 

It is a consequence of (A2), (2.15), (5.1.6) and the monotonicity property of 
E(x) for x real that the above limit exists for 0 < x < oe. Furthermore it 
follows from the definition that 

Fso,m(X ) = Fso.~(2x ) (14) 

Setting x = e t and ~So,,(x) = Fsom(e x) the above formula yields 

~SO,m(t) = ~so,m(t + ln2) (A5) 

Thus +,o.m is periodic with period log 2, and we have 

sin(~r~0m) (ln y+ln 2~)SO.m(t ) dt (16) 
r~ = ~ 1--ff~a ,Iny 

This equality displays the relation between the independence on y and the 
periodicity property of ~b~0,, ' . 

From (A1), and provided that sin(Trs0)< 0, which is achieved for 
X > 0, we get 

r0, 0 > 0 (17) 

We shall now prove that there is a simple relation between to, m and r,, m, an 
immediate consequence of which will be the positivity of the residues rm, o. 
Using equations (5.3.6) and (5.3.11), we define 

"f,(s) - -s inws M( ~ ,s) (18) 

V , ( s ) -  sin ys W( ~ ,s) (A9) 
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Setting 

2(2a) * (--S)i 
K(s , i )  = 1 - 2(2a) ~ (1),(2a), (A10) 

where the classical Pochhammer's symbol (b)~ is equal to 

(b)i= b(b + 1 ) . . .  (b + i - 1) (A11) 

one has from (5.3.13), and for Res > 0 

V.(s) 
+ k K ( s , j ) y , ( s  + j )  (A12) 

V"( s ) -  1 - 2 ( 2 a ) "  j= ,  

The value of y in (A8) and (A9) has been chosen small enough, (but 
nonzero) to insure the absolute convergence of the series. We first observe 
two important properties of K(s,i)  defined in (A10): 

< 2(2a)S (i)-Re~ [ + o ( i l  )] (113) X(s,  i) 
1 - 2(2a)* IV(- s)l(2a)' k 1 

K(s, i )  > 0 for s real, s < So (A14) 

Multiplying (A12) by 1 - 2(2a)S; then taking the limit s ~ So, m = s o + imr, 
one finds 

lim lira [1 - 2(2a) s] V,(s) - V~(SO'm) (A15) 
. ~  s-,so,,. ' ln(2a) - r~ - ln2a 

Now iterating (A12) once yields for Res > 0 

V,(s) ~ Vn(s + i) 
V , ( s ) -  + Z K(s, i )  

1 - 2(2a) s i= 1 1 - 2(2a) s+i 

+ ~ K ( s ,  i l ) K ( s  + i l ,  i2)]/n(S q- i 1 + i2) (A16) 
il=l i2=1 

If we now multiply both sides by [1 - 2(2a)q[1 - 2(2a) ~+ l], we find, using 
(A13), that the above series can be continued to Res > - 2 ,  and that 

rn(s) 
lira lira [1 - 2 ( 2 a )  ~+1] ln(2a) 

n--ffo~ S--+So, n I 

From (A14) we deduce for 2~ > 0 

rl, 0 > 0 

- -  rl ,  m = g ( S o ,  m _ l ,  1)r0, m (A17) 

(A18) 

The general case follows upon iterating (A12) n times, and multiplying by 
I-I,'=0[1 - 2(2a)S+i]. The new series can be continued to Res > s o - n - 1; 
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thus,  for  p > 0, 

satisfies 
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l im  l im [1 - 2(2a) '+el 7n(s) 
n~,e/o s--->SO, m_ p ~ ~- rp, m ( 1 1 9 )  

rp, m = ro, m K ( s o , m - p ,  P )  

p 1 

+ E K( 'O,m-p, i , )n(so ,  m-p+i , ,  p - i,) 
i1=1 

p - 2  p - l - i l  

+ E ~ ,  K ( s o , m - p ' i ' )  
il= 1 i2~ l 

• K (So ,m-p+i ,  , i 2 ) K ( s o , m - p + i ,  +i2, P - i~ - i2) 

+ - . .  + 

p ) 
"~ I ~  g ( S o , m - j '  1) 

j = l  

f r o m  which ,  us ing  (A14),  we  get  rp, o > 0 for  X > 0. 
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